The National Academies

The National Academies: What You Need To Know About Infectious Disease

What You Need To Know About Infectious Disease

What do you know about infectious disease?

Which reproduce the fastest:

  • Sorry, that’s incorrect.

    Viruses reproduce the fastest. Humans produce a new generation every 20 years or so; bacteria do it every 20 to 30 minutes, and viruses even faster.

  • Sorry, that’s incorrect.

    Viruses reproduce the fastest. Humans produce a new generation every 20 years or so; bacteria do it every 20 to 30 minutes, and viruses even faster.

  • Correct!

    Viruses reproduce the fastest. Humans produce a new generation every 20 years or so; bacteria do it every 20 to 30 minutes, and viruses even faster.

The human papillomavirus (HPV) causes about what percentage of cervical cancer cases?

  • Sorry, that’s incorrect.

    The human papillomavirus (HPV) causes more than 90% of cervical cancer cases.

  • Sorry, that’s incorrect.

    The human papillomavirus (HPV) causes more than 90% of cervical cancer cases.

  • Correct!

    The human papillomavirus (HPV) causes more than 90% of cervical cancer cases.

What fraction of all deaths worldwide are caused by infectious disease?

  • Sorry, that’s incorrect.

    About one quarter of all deaths worldwide are caused by infectious disease. More than two-thirds of the deaths in children under the age of five are caused by infectious disease.

  • Correct!

    About one quarter of all deaths worldwide are caused by infectious disease. More than two-thirds of the deaths in children under the age of five are caused by infectious disease.

  • Sorry, that’s incorrect.

    About one quarter of all deaths worldwide are caused by infectious disease. More than two-thirds of the deaths in children under the age of five are caused by infectious disease.

“Antibiotic resistance” refers to:

  • Sorry, that’s incorrect.

    “Antibiotic resistance” refers to the ability of bacteria to resist the effects of an antibiotic. Antibiotic resistance occurs when bacteria undergo a genetic change that reduces or eliminates the effectiveness of drugs or other agents designed to cure or prevent infection.

  • Sorry, that’s incorrect.

    “Antibiotic resistance” refers to the ability of bacteria to resist the effects of an antibiotic. Antibiotic resistance occurs when bacteria undergo a genetic change that reduces or eliminates the effectiveness of drugs or other agents designed to cure or prevent infection.

  • Correct!

    “Antibiotic resistance” refers to the ability of bacteria to resist the effects of an antibiotic. Antibiotic resistance occurs when bacteria undergo a genetic change that reduces or eliminates the effectiveness of drugs or other agents designed to cure or prevent infection.

True or False: Antibiotics work by introducing an agent that resembles a disease-causing microbe, thus stimulating the body's immune system to recognize it as foreign, destroy it, and "remember" it, so that it can more easily identify and destroy any similar, disease-causing microbes that it later encounters.

  • Sorry, that’s incorrect.

    The above describes how vaccines work. Antibiotics work by either killing bacteria or stopping them from reproducing, allowing the body's natural defenses to eliminate the pathogens.

  • Correct!

    The above describes how vaccines work. Antibiotics work by either killing bacteria or stopping them from reproducing, allowing the body's natural defenses to eliminate the pathogens.

Public health officials can identify the outbreak of disease by monitoring certain patterns of behavior through syndromic surveillance. Which of the following is one of the signs used to identify a disease outbreak using this system?

  • Sorry, that’s incorrect.

    In syndromic surveillance, all of the above are used in addition to other patterns that suggest an outbreak. Despite the emergence of this innovative surveillance method, most surveillance still depends on tracking reported infections. 

  • Sorry, that’s incorrect.

    In syndromic surveillance, all of the above are used in addition to other patterns that suggest an outbreak. Despite the emergence of this innovative surveillance method, most surveillance still depends on tracking reported infections. 

  • Sorry, that’s incorrect.

    In syndromic surveillance, all of the above are used in addition to other patterns that suggest an outbreak. Despite the emergence of this innovative surveillance method, most surveillance still depends on tracking reported infections. 

  • Correct!

    In syndromic surveillance, all of the above are used in addition to other patterns that suggest an outbreak. Despite the emergence of this innovative surveillance method, most surveillance still depends on tracking reported infections. 

Which are examples of ways that pathogens (disease-causing microbes) can spread?

  • Sorry, that’s incorrect.

    All are examples of ways that pathogens can spread. Coughing is an example of airborne droplet transmission; eating undercooked pork is an example of common vehicle transmission; a flea bite is an example of vector transmission; and breathing contaminated dust particles is an example of airborne transmission.

  • Sorry, that’s incorrect.

    All are examples of ways that pathogens can spread. Coughing is an example of airborne droplet transmission; eating undercooked pork is an example of common vehicle transmission; a flea bite is an example of vector transmission; and breathing contaminated dust particles is an example of airborne transmission.

  • Sorry, that’s incorrect.

    All are examples of ways that pathogens can spread. Coughing is an example of airborne droplet transmission; eating undercooked pork is an example of common vehicle transmission; a flea bite is an example of vector transmission; and breathing contaminated dust particles is an example of airborne transmission.

  • Sorry, that’s incorrect.

    All are examples of ways that pathogens can spread. Coughing is an example of airborne droplet transmission; eating undercooked pork is an example of common vehicle transmission; a flea bite is an example of vector transmission; and breathing contaminated dust particles is an example of airborne transmission.

  • Correct!

    All are examples of ways that pathogens can spread. Coughing is an example of airborne droplet transmission; eating undercooked pork is an example of common vehicle transmission; a flea bite is an example of vector transmission; and breathing contaminated dust particles is an example of airborne transmission.

True or False: Thimerosal, a mercury-containing preservative that was used in some vaccines and other products, has been shown to present a risk to human health.

  • Sorry, that’s incorrect.

    The use of thimerosal has been an object of controversy, with some arguing that the substance caused autism in children. However, extensive independent research has presented no convincing evidence of harm associated with the low levels of thimerosal previously present in vaccines.

  • Correct!

    The use of thimerosal has been an object of controversy, with some arguing that the substance caused autism in children. However, extensive independent research has presented no convincing evidence of harm associated with the low levels of thimerosal previously present in vaccines.

Each year, how many Americans become infected by what they eat?

  • Sorry, that’s incorrect.

    Each year about 76 million Americans—or one in four—become infected by what they eat. Approximately 325,000 are hospitalized. More than 5,000 (14 a day) die.

  • Sorry, that’s incorrect.

    Each year about 76 million Americans—or one in four—become infected by what they eat. Approximately 325,000 are hospitalized. More than 5,000 (14 a day) die.

  • Correct!

    Each year about 76 million Americans—or one in four—become infected by what they eat. Approximately 325,000 are hospitalized. More than 5,000 (14 a day) die.

Place this badge on your Facebook page to show your friends what you know about infectious disease.

Get the badge

Place this badge on your Facebook page to show your friends what you know about infectious disease.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your Facebook page to show your friends what you know about infectious disease.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Disease Watchlist

Infectious Disease Defined

Adaptive Mutation

A mechanism through which certain cells can increase the rate in which genetic mutations occur, often in response to stress. This mechanism may help explain how bacteria develop resistance to certain antibiotics.

View our full glossary