The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

What type of transportation uses the most total energy?

  • Correct!

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

According to the Corporate Average Fuel Economy (CAFE) standards, what is the average miles per gallon (mpg) required for new cars, SUVs, and light trucks (combined) by 2025?

  • Sorry, that’s incorrect.

    The most recent federal efficiency standards, finalized by the U.S. National Highway Traffic Safety Administration (NHTSA) and the Environmental Protection Agency (EPA) in 2012, are projected to increase fuel economy to the equivalent of 54.5 mpg for cars and light-duty trucks by model year 2025, while also reducing CO2 emissions. 

  • Sorry, that’s incorrect.

    The most recent federal efficiency standards, finalized by the U.S. National Highway Traffic Safety Administration (NHTSA) and the Environmental Protection Agency (EPA) in 2012, are projected to increase fuel economy to the equivalent of 54.5 mpg for cars and light-duty trucks by model year 2025, while also reducing CO2 emissions. 

  • Sorry, that’s incorrect.

    The most recent federal efficiency standards, finalized by the U.S. National Highway Traffic Safety Administration (NHTSA) and the Environmental Protection Agency (EPA) in 2012, are projected to increase fuel economy to the equivalent of 54.5 mpg for cars and light-duty trucks by model year 2025, while also reducing CO2 emissions. 

  • Correct!

    The most recent federal efficiency standards, finalized by the U.S. National Highway Traffic Safety Administration (NHTSA) and the Environmental Protection Agency (EPA) in 2012, are projected to increase fuel economy to the equivalent of 54.5 mpg for cars and light-duty trucks by model year 2025, while also reducing CO2 emissions. 

  • Sorry, that’s incorrect.

    The most recent federal efficiency standards, finalized by the U.S. National Highway Traffic Safety Administration (NHTSA) and the Environmental Protection Agency (EPA) in 2012, are projected to increase fuel economy to the equivalent of 54.5 mpg for cars and light-duty trucks by model year 2025, while also reducing CO2 emissions. 

Which of the following sources do experts expect will provide us with the “silver bullet” solution to our energy needs?

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Correct!

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

Refrigerators became 70% more efficient between 1972 and 2001, primarily due to regulation. What is a market response to increased efficiency of refrigerators?

  • Sorry, that’s incorrect.

    Refrigerators are not likely to be used more or less hours in the day, but people are more likely to have more of them if they cost less to operate.

  • Sorry, that’s incorrect.

    Refrigerators are not likely to be used more or less hours in the day, but people are more likely to have more of them if they cost less to operate.

  • Correct!

    Refrigerators are not likely to be used more or less hours in the day, but people are more likely to have more of them if they cost less to operate.

In 2014, approximately how much energy did the United States use, in quadrillion BTUs?

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Correct!

    U.S. energy consumption was about 98 quads in 2014.

What are ways that electricity system operators match power needs to generation on a day-to-day basis?

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Correct!

     

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

What is the largest reservoir of stored solar energy?

  • Sorry, that’s incorrect.

    Fossil fuels represent the largest source of stored solar energy, resulting from the transformation of biomass over millions of years into oil, natural gas and coal. 

  • Sorry, that’s incorrect.

    Fossil fuels represent the largest source of stored solar energy, resulting from the transformation of biomass over millions of years into oil, natural gas and coal. 

  • Correct!

    Fossil fuels represent the largest source of stored solar energy, resulting from the transformation of biomass over millions of years into oil, natural gas and coal. 

Which has been growing more, energy to heat homes or energy to cool homes?

  • Sorry, that’s incorrect.

    Current trends indicate that by 2040 residential buildings will consume up to 28% less energy for heating but about 50% more for cooling. 

  • Correct!

    Current trends indicate that by 2040 residential buildings will consume up to 28% less energy for heating but about 50% more for cooling. 

  • Sorry, that’s incorrect.

    Current trends indicate that by 2040 residential buildings will consume up to 28% less energy for heating but about 50% more for cooling. 

Which residential usage consumes the largest amount of energy?

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Correct!

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Ocean Acidification

The process by which the hydronium ion concentration increases in the ocean, measured as decreasing pH. One source of ocean acidification is the dissolution of carbon dioxide, which forms carbonic acid with water and then dissociates into hydronium and bicarbonate. Lower pH impacts ocean life, including their soft and hard materials, and also human-built structures in the ocean, such as vessels.

View our full glossary