The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

If electricity production wastes between 40 and 65% of the primary energy source, why is it used?

  • Sorry, that’s incorrect.

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

  • Sorry, that’s incorrect.

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

  • Correct!

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

Which of the following is emitted by coal-fired power plants?

  • Sorry, that’s incorrect.

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

  • Sorry, that’s incorrect.

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

  • Sorry, that’s incorrect.

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

  • Sorry, that’s incorrect.

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

  • Correct!

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

True or false? Wind energy generation is increasing in the United States.

  • Correct!

    In the United States, the amount of electricity generated from wind doubled between 2009 and 2014, and now makes up 18% of all renewable energy consumed and almost 2% of total U.S. energy use. 

  • Sorry, that’s incorrect.

    In the United States, the amount of electricity generated from wind doubled between 2009 and 2014, and now makes up 18% of all renewable energy consumed and almost 2% of total U.S. energy use. 

True or False: Burning biofuels does not release carbon dioxide.

  • Sorry, that’s incorrect.

    Biofuels contain carbon and although they may burn “cleaner” than oil-derived fuels, they do not avoid generating carbon dioxide emissions.

  • Correct!

    Biofuels contain carbon and although they may burn “cleaner” than oil-derived fuels, they do not avoid generating carbon dioxide emissions.

Energy intensity is a measure of:

  • Correct!

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

Which of the following is not a primary energy source?

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Correct!

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

In 2014, how much of the world's CO2 is released by the United States?

  • Sorry, that’s incorrect.

    The United States emits about 18% of the world’s greenhouse gases, behind only China, which accounts for approximately one-quarter of total global emissions. 

  • Correct!

    The United States emits about 18% of the world’s greenhouse gases, behind only China, which accounts for approximately one-quarter of total global emissions. 

  • Sorry, that’s incorrect.

    The United States emits about 18% of the world’s greenhouse gases, behind only China, which accounts for approximately one-quarter of total global emissions. 

  • Sorry, that’s incorrect.

    The United States emits about 18% of the world’s greenhouse gases, behind only China, which accounts for approximately one-quarter of total global emissions. 

Which of the following sources do experts expect will provide us with the “silver bullet” solution to our energy needs?

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Correct!

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

On average, how much solar radiation reaches each square meter of earth?

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Correct!

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Photovoltaic (PV) Cell

Sometimes referred to as a solar cell, a device that utilizes the photoelectric effect to convert incident sunlight directly into electricity. This can be distinguished from solar thermal energy, which is sometimes used to create electricity indirectly.

View our full glossary