The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

Which of the following is not considered to be a drawback to wind energy?

  • Sorry, that’s incorrect.

    While wind energy has many benefits, all of the above are considered drawbacks to wind energy.

  • Sorry, that’s incorrect.

    While wind energy has many benefits, all of the above are considered drawbacks to wind energy.

  • Sorry, that’s incorrect.

    While wind energy has many benefits, all of the above are considered drawbacks to wind energy.

  • Correct!

    While wind energy has many benefits, all of the above are considered drawbacks to wind energy.

What is the largest reservoir of stored solar energy?

  • Sorry, that’s incorrect.

    Fossil fuels represent the largest source of stored solar energy, resulting from the transformation of biomass over millions of years into oil, natural gas and coal. 

  • Sorry, that’s incorrect.

    Fossil fuels represent the largest source of stored solar energy, resulting from the transformation of biomass over millions of years into oil, natural gas and coal. 

  • Correct!

    Fossil fuels represent the largest source of stored solar energy, resulting from the transformation of biomass over millions of years into oil, natural gas and coal. 

How are battery electric vehicles and hybrid vehicles different?

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Correct!

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

True or false? Carbon capture and storage would reduce energy efficiency of a coal plant?

  • Correct!

    Carbon capture and storage will reduce energy efficiency of a coal plant, though it will decrease carbon emissions.

  • Sorry, that’s incorrect.

    Carbon capture and storage will reduce energy efficiency of a coal plant, though it will decrease carbon emissions.

True or false? Hydraulic fracturing and horizontal drilling have increased oil and gas production in the U.S.

  • Correct!

    Extraction of "tight" oil—light crude oil contained in geological formations of shale or sandstone—accounted for only 12% of total U.S. oil production in 2008. By 2012, it made up 35%, and is predicted to rise to 50% in the near term.

  • Sorry, that’s incorrect.

    Extraction of "tight" oil—light crude oil contained in geological formations of shale or sandstone—accounted for only 12% of total U.S. oil production in 2008. By 2012, it made up 35%, and is predicted to rise to 50% in the near term.

What type of transportation uses the most total energy?

  • Correct!

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

On average, how much solar radiation reaches each square meter of earth?

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Correct!

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

If electricity production wastes between 40 and 65% of the primary energy source, why is it used?

  • Sorry, that’s incorrect.

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

  • Sorry, that’s incorrect.

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

  • Correct!

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

Energy intensity is a measure of:

  • Correct!

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

All-Electric Vehicle (EV)

A vehicle powered entirely by electricity stored in on-board batteries and without access to the use of gasoline or diesel fuel as an alternative energy source. Batteries are recharged by plugging them into an electricity source while the vehicle is parked.

View our full glossary