The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

In 2014, approximately how much energy did the United States use, in quadrillion BTUs?

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Correct!

    U.S. energy consumption was about 98 quads in 2014.

True or false? Fuel cells store energy.

  • Sorry, that’s incorrect.

    Fuel cells are an efficient way to convert hydrogen to electricity, but the energy is stored in the hydrogen.

  • Correct!

    Fuel cells are an efficient way to convert hydrogen to electricity, but the energy is stored in the hydrogen.

Nuclear power provided what percentage of the total U.S. energy supply in 2013?

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Correct!

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

True or false? Hydraulic fracturing and horizontal drilling have increased oil and gas production in the U.S.

  • Correct!

    Extraction of "tight" oil—light crude oil contained in geological formations of shale or sandstone—accounted for only 12% of total U.S. oil production in 2008. By 2012, it made up 35%, and is predicted to rise to 50% in the near term.

  • Sorry, that’s incorrect.

    Extraction of "tight" oil—light crude oil contained in geological formations of shale or sandstone—accounted for only 12% of total U.S. oil production in 2008. By 2012, it made up 35%, and is predicted to rise to 50% in the near term.

How are battery electric vehicles and hybrid vehicles different?

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Sorry, that’s incorrect.

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

  • Correct!

    Battery electric vehicles have only a motor and battery, they recharge from the grid and their carbon emissions depend on the energy used to generate the electricity they use. Hybrid vehicles have both a gasoline engine and an electric motor, and use petroleum onboard when their batteries are exhausted. Some hybrid vehicles can charge from the grid and others cannot. 

Which of the following is frequently used as a unit of measurement for the energy content of fuels?

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Correct!

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

Which of the following is not a primary energy source?

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Correct!

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

On average, which is most efficient in coverting heat into electic power?

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Correct!

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

Refrigerators became 70% more efficient between 1972 and 2001, primarily due to regulation. What is a market response to increased efficiency of refrigerators?

  • Sorry, that’s incorrect.

    Refrigerators are not likely to be used more or less hours in the day, but people are more likely to have more of them if they cost less to operate.

  • Sorry, that’s incorrect.

    Refrigerators are not likely to be used more or less hours in the day, but people are more likely to have more of them if they cost less to operate.

  • Correct!

    Refrigerators are not likely to be used more or less hours in the day, but people are more likely to have more of them if they cost less to operate.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Carbon Sequestration

The act of capturing gaseous atmospheric carbon, usually in the form of CO2, and placing it into a carbon sink through either biological or physical processes.

View our full glossary