The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

Energy intensity is a measure of:

  • Correct!

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

Between 1980 and 2012, after fuel economy standards where put in place, which of the following has happened to vehicles?

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Sorry, that’s incorrect.

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

  • Correct!

    Improved vehicle efficiency has allowed for increases in weight, horsepower and fuel economy.

Which of the following sources do experts expect will provide us with the “silver bullet” solution to our energy needs?

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Correct!

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

How efficient are ordinary commercial solar cell units?

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Correct!

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

True or false? Wind energy generation is increasing in the United States.

  • Correct!

    In the United States, the amount of electricity generated from wind doubled between 2009 and 2014, and now makes up 18% of all renewable energy consumed and almost 2% of total U.S. energy use. 

  • Sorry, that’s incorrect.

    In the United States, the amount of electricity generated from wind doubled between 2009 and 2014, and now makes up 18% of all renewable energy consumed and almost 2% of total U.S. energy use. 

America, with 5% of the planet's population, consumes how much of the world's oil?

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Correct!

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

On average, which is most efficient in coverting heat into electic power?

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Correct!

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

Renewable energy (solar, wind, geothermal, hydroelectric, biofuels, waste, and wood) accounted for what percentage of the total energy supply in the United States in 2014?

  • Correct!

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

On average, how much solar radiation reaches each square meter of earth?

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Correct!

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Clean Coal

Coal burned in power plants equipped with technologies that greatly reduce the emission of pollutants such as sulfur, nitrogen, mercury, and, potentially, carbon dioxide.

View our full glossary