The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

Which source(s) of energy are not nuclear in origin?

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun.

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Geothermal energy comes from radioactive decay inside the earth.

  • Correct!

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun, and geothermal energy comes from radioactive decay inside the earth.

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun, and geothermal energy comes from radioactive decay inside the earth.

In 2014, of the four economic sectors, which used the most energy in the United States?

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Correct!

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

What is the commonly accepted unit of measurement for electric current—or the amount of an electric charge passing a point per unit time?

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Correct!

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

America, with 5% of the planet's population, consumes how much of the world's oil?

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Correct!

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

Which of the following is not a primary energy source?

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Correct!

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

What is a major reason that the U.S. is exporting more oil in 2014 than in 2005?

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Correct!

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

Which of the following is frequently used as a unit of measurement for the energy content of fuels?

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Correct!

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

If electricity production wastes between 40 and 65% of the primary energy source, why is it used?

  • Sorry, that’s incorrect.

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

  • Sorry, that’s incorrect.

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

  • Correct!

    Most direct uses of primary energy are limited to generating heat and motion. Electricity, by contrast, is extremely versatile, with a wide range of complex applications. 

On average, which is most efficient in coverting heat into electic power?

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Correct!

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Cooling Degree Days

A value representing the amount of fuel required for building cooling, calculated by summing the difference of each day’s average temperature above 65 degrees Fahrenheit.

View our full glossary