The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

America, with 5% of the planet's population, consumes how much of the world's oil?

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Correct!

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

  • Sorry, that’s incorrect.

    As of 2014, total world consumption was approximately 92 million barrels per day, about 19 million or 21% of which were used by the United States.

Which has been growing more, energy used by lighting and appliances or energy used for heating and cooling?

  • Correct!

    For decades, more than half of all residential energy use went  to space heating and cooling; in 1993, it accounted for nearly 60%. But EIA data show that by 2009, that share had dropped to 48%. And in the period 1993 to 2009, energy for appliances, electronics, and lighting rose from 24% to 35%, owing to the proliferation of appliances, as well as trends toward larger TVs and other devices.

  • Sorry, that’s incorrect.

    For decades, more than half of all residential energy use went  to space heating and cooling; in 1993, it accounted for nearly 60%. But EIA data show that by 2009, that share had dropped to 48%. And in the period 1993 to 2009, energy for appliances, electronics, and lighting rose from 24% to 35%, owing to the proliferation of appliances, as well as trends toward larger TVs and other devices.

Combustion of gasoline and diesel fuel emits which of the following?

  • Sorry, that’s incorrect.

    All of the above are emitted by vehicles running on gasoline and diesel fuel.

  • Sorry, that’s incorrect.

    All of the above are emitted by vehicles running on gasoline and diesel fuel.

  • Sorry, that’s incorrect.

    All of the above are emitted by vehicles running on gasoline and diesel fuel.

  • Sorry, that’s incorrect.

    All of the above are emitted by vehicles running on gasoline and diesel fuel.

  • Correct!

    All of the above are emitted by vehicles running on gasoline and diesel fuel.

How efficient are ordinary commercial solar cell units?

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Correct!

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

Which of the following sources do experts expect will provide us with the “silver bullet” solution to our energy needs?

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Correct!

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

Energy intensity is a measure of:

  • Correct!

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

  • Sorry, that’s incorrect.

    Energy intensity is a measure of a nation's energy efficiency represented through energy use per unit of GDP (Gross Domestic Product).

What is the commonly accepted unit of measurement for electric current—or the amount of an electric charge passing a point per unit time?

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Correct!

    The ampere, or amp, is the most commonly used measurement for electric current.

  • Sorry, that’s incorrect.

    The ampere, or amp, is the most commonly used measurement for electric current.

The consumption of energy in the United States is projected to rise by how much between 2013 and 2040?

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per year, while global consumption will increase about 50% over the same period

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per year, while global consumption will increase about 50% over the same period

  • Correct!

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per year, while global consumption will increase about 50% over the same period

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per year, while global consumption will increase about 50% over the same period

In 2014, of the four economic sectors, which used the most energy in the United States?

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Correct!

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Secondary Energy Resource (or Source)

A source of energy that is dependent on a primary source of energy for its power. Since the production of electricity, for example, is dependent on the use of fossil fuels, nuclear power, or renewable sources, it is referred to as a secondary energy source.

View our full glossary