The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

How efficient are ordinary commercial solar cell units?

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Correct!

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

What type of transportation uses the most total energy?

  • Correct!

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

In 2014, what percentage of the United States' total energy consumption came from oil?

  • Sorry, that’s incorrect.

    In 2014, the United States got 35% of its energy from petroleum, and experts project that demand for this fuel will rise at least through 2020. 

  • Sorry, that’s incorrect.

    In 2014, the United States got 35% of its energy from petroleum, and experts project that demand for this fuel will rise at least through 2020. 

  • Sorry, that’s incorrect.

    In 2014, the United States got 35% of its energy from petroleum, and experts project that demand for this fuel will rise at least through 2020. 

  • Correct!

    In 2014, the United States got 35% of its energy from petroleum, and experts project that demand for this fuel will rise at least through 2020. 

Renewable energy (solar, wind, geothermal, hydroelectric, biofuels, waste, and wood) accounted for what percentage of the total energy supply in the United States in 2014?

  • Correct!

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

Nuclear power provided what percentage of the total U.S. energy supply in 2013?

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Correct!

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

True or false? Carbon capture and storage would reduce energy efficiency of a coal plant?

  • Correct!

    Carbon capture and storage will reduce energy efficiency of a coal plant, though it will decrease carbon emissions.

  • Sorry, that’s incorrect.

    Carbon capture and storage will reduce energy efficiency of a coal plant, though it will decrease carbon emissions.

On average, how much solar radiation reaches each square meter of earth?

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Correct!

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

Which of the following is considered an obstacle to cars running on hydrogen fuel cells?

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Correct!

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

What are ways that electricity system operators match power needs to generation on a day-to-day basis?

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Correct!

     

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

America's Energy Future (AEF)

A project undertaken by the National Academy of Sciences, the National Academy of Engineering, and the National Research Council to evaluate current contributions and likely future impacts of existing and new energy technologies. More information about the project, including a roster of committee members, can be found on the AEF website.

View our full glossary