The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

In 2014, of the four economic sectors, which used the most energy in the United States?

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Correct!

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

True or false? Fuel cells store energy.

  • Sorry, that’s incorrect.

    Fuel cells are an efficient way to convert hydrogen to electricity, but the energy is stored in the hydrogen.

  • Correct!

    Fuel cells are an efficient way to convert hydrogen to electricity, but the energy is stored in the hydrogen.

A typical incandescent lamp (traditional light bulb) consumes 60 watts of power. How much do each of a compact fluorescent and LED lamp consume, in watts, to produce the same amount of light?

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Sorry, that’s incorrect.

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

  • Correct!

    A typical incandescent lamp (traditional light bulb) that consumes 60 watts of power produces around 800 lumens. A compact fluorescent lamp emits the same amount of light while using only 13 watts. And an LED lamp consumes only 10 watts to give off the same 800 lumens.

What is the primary energy user in the industrial sector?

  • Sorry, that’s incorrect.

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

  • Sorry, that’s incorrect.

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

  • Sorry, that’s incorrect.

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

  • Sorry, that’s incorrect.

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

  • Correct!

    A few industries use a very large share of energy in the industrial sector. Petroleum refining is the principal consumer, with the chemical industry a close second. Those users, plus the paper and metal industries, account for 78% of total industrial energy use.

Since the beginning of the industrial revolution, about how much have atmospheric carbon dioxide concentrations increased?

  • Correct!

    CO2 concentration in the atmosphere has risen about 43% since the beginning of the industrial revolution in the mid-eighteenth century-half of that since 1980

  • Sorry, that’s incorrect.

    CO2 concentration in the atmosphere has risen about 43% since the beginning of the industrial revolution in the mid-eighteenth century-half of that since 1980

  • Sorry, that’s incorrect.

    CO2 concentration in the atmosphere has risen about 43% since the beginning of the industrial revolution in the mid-eighteenth century-half of that since 1980

  • Sorry, that’s incorrect.

    CO2 concentration in the atmosphere has risen about 43% since the beginning of the industrial revolution in the mid-eighteenth century-half of that since 1980

Which of the following is emitted by coal-fired power plants?

  • Sorry, that’s incorrect.

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

  • Sorry, that’s incorrect.

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

  • Sorry, that’s incorrect.

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

  • Sorry, that’s incorrect.

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

  • Correct!

    All of the above are emitted from coal-fired power plants and can be harmful to our health and the environment.

In 2014, approximately how much energy did the United States use, in quadrillion BTUs?

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Correct!

    U.S. energy consumption was about 98 quads in 2014.

Which residential usage consumes the largest amount of energy?

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Correct!

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

  • Sorry, that’s incorrect.

    Consuming the largest amount of energy, space heating accounts for 31% of all residential energy used. Space cooling accounts for an additional 12% of energy usage.

Which source(s) of energy are not nuclear in origin?

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun.

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Geothermal energy comes from radioactive decay inside the earth.

  • Correct!

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun, and geothermal energy comes from radioactive decay inside the earth.

  • Sorry, that’s incorrect.

    Tidal energy is gravitational in origin. Solar energy comes from nuclear reactions in the sun, and geothermal energy comes from radioactive decay inside the earth.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Quad

A unit of measure used to describe very large quantities of energy, such as the annual energy output of the United States. One quad is equal to one quadrillion—that is, one million billion, or 1015—Btu.

View our full glossary