The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

What type of transportation uses the most total energy?

  • Correct!

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

  • Sorry, that’s incorrect.

    By far the largest share of energy in transportation is consumed by cars, light trucks, and motorcycles—about 58% in 2012, followed by other trucks (21%), aircraft (9%), boats and ships (3%), and trains and buses (3%). Pipelines account for 3% and military uses for 2%.

In 2014, of the four economic sectors, which used the most energy in the United States?

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Correct!

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

Nuclear power provided what percentage of the total U.S. energy supply in 2013?

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Correct!

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

  • Sorry, that’s incorrect.

    19% of our electricity was generated  by nuclear fuel in 2013. 

Which renewable energy source contributed the most to the total energy consumed in the United States in 2014?

  • Sorry, that’s incorrect.

    Wood and waste biomass, along with biofuels, accounted for about 50% of the U.S. renewable energy supply in 2014, and more than 4% of all energy consumed. 

  • Sorry, that’s incorrect.

    Wood and waste biomass, along with biofuels, accounted for about 50% of the U.S. renewable energy supply in 2014, and more than 4% of all energy consumed. 

  • Correct!

    Wood and waste biomass, along with biofuels, accounted for about 50% of the U.S. renewable energy supply in 2014, and more than 4% of all energy consumed. 

  • Sorry, that’s incorrect.

    Wood and waste biomass, along with biofuels, accounted for about 50% of the U.S. renewable energy supply in 2014, and more than 4% of all energy consumed. 

Which of the following is frequently used as a unit of measurement for the energy content of fuels?

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Correct!

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

  • Sorry, that’s incorrect.

    The British Thermal Unit, or Btu, is frequently used as a measure for energy content of fuels. One gallon of gasoline contains about 124,000 Btu.

Which of the following is not a primary energy source?

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Correct!

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

  • Sorry, that’s incorrect.

    Electricity is a secondary energy source because it can only be produced from the use of primary energy sources such as coal, natural gas, or nuclear reactions.

Which has been growing more, energy used by lighting and appliances or energy used for heating and cooling?

  • Correct!

    For decades, more than half of all residential energy use went  to space heating and cooling; in 1993, it accounted for nearly 60%. But EIA data show that by 2009, that share had dropped to 48%. And in the period 1993 to 2009, energy for appliances, electronics, and lighting rose from 24% to 35%, owing to the proliferation of appliances, as well as trends toward larger TVs and other devices.

  • Sorry, that’s incorrect.

    For decades, more than half of all residential energy use went  to space heating and cooling; in 1993, it accounted for nearly 60%. But EIA data show that by 2009, that share had dropped to 48%. And in the period 1993 to 2009, energy for appliances, electronics, and lighting rose from 24% to 35%, owing to the proliferation of appliances, as well as trends toward larger TVs and other devices.

In 2014, approximately how much energy did the United States use, in quadrillion BTUs?

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Sorry, that’s incorrect.

    U.S. energy consumption was about 98 quads in 2014.

  • Correct!

    U.S. energy consumption was about 98 quads in 2014.

Which of the following sources do experts expect will provide us with the “silver bullet” solution to our energy needs?

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Sorry, that’s incorrect.

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

  • Correct!

    There is no silver bullet. Tomorrow’s energy, like today’s, will come from a variety of sources.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Hydroelectric Power

Electric power generated from water turning a generator.

View our full glossary