The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

Which of the following is considered an obstacle to cars running on hydrogen fuel cells?

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Sorry, that’s incorrect.

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

  • Correct!

    All of the reasons mentioned are considered obstacles to producing cars that run on hydrogen fuel cells.

How efficient are ordinary commercial solar cell units?

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Correct!

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

Renewable energy (solar, wind, geothermal, hydroelectric, biofuels, waste, and wood) accounted for what percentage of the total energy supply in the United States in 2014?

  • Correct!

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

What is a major reason that the U.S. is exporting more oil in 2014 than in 2005?

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Sorry, that’s incorrect.

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

  • Correct!

    New technologies for drilling have led to increases in supply of oil in the U.S. in the decade up to 2014.

In 2014, approximately how much of the oil used in the U.S. was imported?

  • Sorry, that’s incorrect.

    The United States imported approximately 27% of its oil. More than one-third of that came from Canada.

  • Correct!

    The United States imported approximately 27% of its oil. More than one-third of that came from Canada.

  • Sorry, that’s incorrect.

    The United States imported approximately 27% of its oil. More than one-third of that came from Canada.

  • Sorry, that’s incorrect.

    The United States imported approximately 27% of its oil. More than one-third of that came from Canada.

The United States is home to how many of the world's automobiles?

  • Sorry, that’s incorrect.

    With less than 5% of the world's population, the United States is home to one-third of the world's automobiles.

  • Correct!

    With less than 5% of the world's population, the United States is home to one-third of the world's automobiles.

  • Sorry, that’s incorrect.

    With less than 5% of the world's population, the United States is home to one-third of the world's automobiles.

What percentage of commercial building energy is used by schools?

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Correct!

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

  • Sorry, that’s incorrect.

    School buildings represent 13% of commercial buildings energy use, or about 2.5% of total U.S. energy use (13% × 19%).

What are ways that electricity system operators match power needs to generation on a day-to-day basis?

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Sorry, that’s incorrect.

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

  • Correct!

     

    Load-following and peaker plants, demand-response and energy storage are all ways that grid operators can adjust generation to meet demand.

On average, which is most efficient in coverting heat into electic power?

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Correct!

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Energy Information Administration (EIA)

An agency within the Department of Energy (DOE) that provides policy-neutral data, forecasts, and analyses to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment.

View our full glossary